Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

نویسندگان

  • Hyungjun Jang
  • Muhammad Refatul Haq
  • Youngkyu Kim
  • Jun Kim
  • Pyoung-hwa Oh
  • Jonghyun Ju
  • Seok-Min Kim
  • Jiseok Lim
چکیده

This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC) stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of All Glass Bifurcation Microfluidic Chip for Blood Plasma Separation

An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC) mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabrication, an enlarged photoresist pattern master was designed, and an AC mold with a dimensional er...

متن کامل

Fabrication of Microchannel with Thin Cover Layer for an Optical Waveguide MEMS Switch Based on Microfluidics

We propose and demonstrate a new fabrication process of a microchannel using the Damascene process. This process aims to integrate photonic circuits with microchannels fabricated in a glass film. The microchannel is fabricated by the removal of the sacrificial layer after a sacrificial layer is formed by the Damascene process and the cover is formed by sputter deposition. A thin cover layer can...

متن کامل

Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turne...

متن کامل

Fabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties

In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...

متن کامل

Design, Fabrication & Simulation of Microchannel Network for MEMS

The greatest challenge being faced for realization of Micro-Electro Mechanical System (MEMS) technology is the lack of a simple, quick and reliable method for the fabrication of 3-D microchannel in the range of micrometers. A novel fabrication technique which opens possibilities for the production of these microfluidic channels is presented in this paper. The present paper highlights the possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017